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Abstract

Continuum-atomistic modelling denotes a mixed approach combining the usual framework of continuum mechanics

with atomistic features like e.g. interaction or rather pair potentials. Thereby, the kinematics are typically characterized

by the so-called Cauchy–Born rule representing atomic distance vectors in the spatial configuration as an affine

mapping of the atomic distance vectors in the material configuration in terms of the local deformation gradient. The

application of the Cauchy–Born rule requires sufficiently homogeneous deformations of the underlying crystal. The

model is no more valid if the deformation becomes inhomogeneous. Nevertheless the development of microstructures

with inhomogeneous deformation is inevitable. In the present work, the Cauchy–Born rule is thus extended to capture

inhomogeneous deformations by the incorporation of the second-order deformation gradient. The higher-order

equilibrium equation as well as the appropriate boundary conditions are presented for the case of finite deformations.

The constitutive law for the Piola–Kirchhoff stress and the additional higher-order stress are represented for the

simplified case of pair potential-based energy density functions. Finally, a deformation inhomogeneity measure is in-

troduced and studied for a particular non-homogeneous simple-shear like deformation.

� 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

Multiscale simulation methods in computational material science have matured considerably during the

last decade. Among a large number of various approaches the techniques using semi-empirical energy

potential functions stemming directly from lattice statics or dynamics, see e.g. Phillips (2001), Shenoy et al.

(1999), Arroyo and Belytschko (2002) and Nakane et al. (2000), could be highlighted. Thereby, the con-

tinuum quantities such as the stress tensor or the tangent operator can be represented in terms of the

derivatives of these potentials and depend consequently on the atomistic forces and stiffnesses. Noteworthy,

the quasi-continuum framework advocated by Tadmor (1996) and Tadmor et al. (1999) consists of two
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different approaches. Thereby in particular the local or, in our terminology continuum-atomistic approach

is only valid as long as the deformation field remains sufficiently homogeneous. If the deformation becomes

non-homogeneous the non-local, or in our terminology the atomistic-continuum approach is more ap-

propriate. An essential ingredient of the former, i.e. the continuum-atomistic approach is the Cauchy–Born
rule (CBR) stemming from Born and Huang (1954) which states essentially that all atoms of a single crystal

volume follow the prescribed displacement of its boundary, see Milstein (1982), Ericksen (1984), Zanzotto

(1996). The validity of the CBR is studied e.g. by Friesecke and Theil (2002), whereby it turns out that the

CBR fails for sufficiently large deformations.

We aim in the continuous description during the whole simulation. Since the application of the standard

Cauchy–Born rule leads to the loss of the infinitesimal rank-one convexity at critical deformation states as

investigated in our recent works (Sunyk and Steinmann, 2001a,b) a relaxation procedure is required to

insure the existence of a solution of the original energy minimization problem, see e.g. Tadmor et al. (1999)
or Chipot and Kinderlehrer (1988). Nevertheless the relaxation results in the development of microstruc-

tures with deformation inhomogeneity at the atomic length scale, for a motivating example see Fig. 1. To

stay within the realm of the continuum-atomistic model and nevertheless to still obtain accurate results in

this more general case of inhomogeneous deformations we consider the CBR in the classical form as the

first term of a Taylor�s series expansion of the deformation field and enhance this expansion by the second
quadratic term including the higher-order deformation gradient. Based on this advanced kinematics we

build a full higher-order gradient framework by minimization of the total energy of the body of interest.

For the case of the loss of rank-one convexity the introduction of higher-order gradients is moreover
motivated from studies on localization limiters, see e.g. Fleck and Hutchinson (1996). This framework is

similar to the Toupin–Mindlin theory of linear elasticity, see Toupin (1962) and (Mindlin, 1964, 1965).

Recently, the higher-order gradient theory for finite deformation has been elaborated by Geers et al. (2001)

and Kouznetsova et al. (2002) within classical continuum mechanics in the context of homogenization

approaches. A comparison of the various higher-order gradients theories can be found in the detailed

overview elaborated by Fleck and Hutchinson (1996).

The new aspects of this contribution are a compact tensor format for all derivations and results; an

application of the continuum-atomistic principles within the second-order theory summarized in Eqs. (30)–
(34); a study of the relevance of the second-order theory for a non-homogeneous deformations on the basis
Fig. 1. Material configuration C0 and two spatial configurations: C
hom
t deformed homogeneously according to the Cauchy–Born rule

and Crelaxed
t obtained during the energy minimization procedure by relaxation. Red circles display an interaction or cut-off-circle of the

middle atom depicted in red and contain the current next neighbours of this atom. Atomic displacements within the cut-off-circle in

Crelaxed
t are no more homogeneous and cannot be captured by the standard Cauchy–Born rule. (For interpretation of the references in

colour in this figure legend, the reader is referred to the web version of this article.)



R. Sunyk, P. Steinmann / International Journal of Solids and Structures 40 (2003) 6877–6896 6879
of a simple example; an introduction of the deformation inhomogeneity measure to characterize the change

of the deformation field within the interaction circle.

The paper is organized as follows. The main definitions from quasi-static atomistic modelling are given

in Section 2; Section 3 contains the detailed description of the continuum-atomistic modelling of the first as
well as the second-order. In Section 4 a study of an example for a non-homogeneous deformation field is

carried out and a deformation inhomogeneity measure is introduced. The conclusions in Section 5 close the

paper.
2. Atomistic constitutive modelling

To set the stage and to introduce several definitions we start with a short review of the direct atomistic

approach, whereby we restrict ourselves to classical lattice statics. For an overview on different approaches

towards nanomechanics we refer to Ortiz and Phillips (1999). We consider a crystallite body consisting of N
interacting atoms. The kinematics are then typically represented by the distance vectors between two atoms

labeled i and j, i.e. Rij and rij in the material and in the spatial configuration, respectively
Rij ¼ Ri � Rj rij ¼ ri � rj with rij ¼ jrijj ð1Þ
The position vectors Ri and ri in both configurations are connected by the non-linear discrete map uiðRiÞ,
see Fig. 2. There are many well-known empirical energy functions describing the inter-atom interaction. In
their simplest form these empirical potentials contain only pair-wise interactions U. Well-known examples
for this type of pair potentials are e.g. Morse, Buckingham and Lennard-Jones potentials, which are

functions of only the relative scalar distances r ¼ jrj between two atoms. For instance, the celebrated
Lennard-Jones potential used as a prototype model in the present work (see Fig. 3) has the format
UðrÞ ¼ 4e
r
r

h i12�
� r

r

h i6�
ð2Þ
with e and r denoting parameters to be fitted. In summary, the energy contribution of the atom i can be
represented as a sum over pair-wise interactions of this atom with all other atoms in the body
Ei ¼
1

2

X
j 6¼i

UðrijÞ �
1

2

X
j 6¼i

Uij ð3Þ
Clearly, more sophisticated models are conceivable and indeed often necessary. For example many im-

portant properties of real solids are determined by their electronic structure. Therefore, it is very significant

to include the dependence of the interaction energy on quantum mechanical effects. This problem has been

treated e.g. in the work of Baskes and Daw (1983), who developed the so called Embedded Atom Method

(EAM). Here each atom in a solid is viewed as an impurity embedded in the host consisting of all other
Fig. 2. Material C0 and spatial Ct crystal lattice configuration.



Fig. 3. The Lennard-Jones potential with parameters r ¼ 0:257 and e ¼ 0:171 (solid line) compared with the harmonic potential

function (dashed line).
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atoms. Thereby the energy Ei of the ith atom consists of two different terms: (1) the embedding energy EiðqiÞ
of atom i, see Puska et al. (1981), i.e. the energy of the atom in a uniform electron gas relative to the atom

separated from the electron gas, and (2) the contributions Uij of the inter-ion interactions. It can be rep-

resented as follows
Ei ¼ EiðqiÞ þ
1

2

X
j 6¼i

Uij with qi ¼
X
j 6¼i

�qqjðrijÞ ð4Þ
The embedding energy depends on the host electron density qi at the position ri before the atom i has been
embedded and is an implicit function of the relative distances rij. Necessarily Ei is a function of these

distances, too. Nevertheless, for the purpose of transparency we restrict ourselves in this work to only pair-
wise inter-atom interactions, thus all subsequent formulae are given under this limitation. In particular,

without loss of generality, we will use the simple Lennard-Jones potential for the sake of demonstration.

Finally, the total internal energy Eint of the crystal lattice can be represented as a sum over all atomic

contributions
Eint ¼
X
i

Ei ð5Þ
Then the derivative of the total internal energy Eint with respect to the position vector ri of the ith atom
yields the force f i acting on this particular atom due to the interactions with all other atoms
f i ¼ �Eint;ri
¼

X
j6¼i

fij with fij ¼ �
U0

ij

rij
rij ð6Þ
whereby the comma denotes partial differentiation and the prime ð
Þ0 denotes the derivative of ð
Þ with
respect to rij, see e.g. Allen and Tildesley (1987), Eq. (5.2). Consequently fij represents the force acting on
the atom i due to the atom j, see Fig. 4. This relation represents the underlying constitutive law of classical
lattice statics based on only pair-potential interactions. Please note that here the summation convention is

not adopted to quantities related to atomistics. The principle of the minimum of the total potential energy
representing the global equilibrium results locally in the equilibrium at each atom



Fig. 4. Definitions of the distance vectors rij and the interaction force f ij.

R. Sunyk, P. Steinmann / International Journal of Solids and Structures 40 (2003) 6877–6896 6881
Etot ¼ Eint þ Eext ! min
ri

()
X
j 6¼i

fij þ f exti ¼: 0 ð7Þ
with the external force f exti acting on the atom i. Within an iterative solution strategy, the second derivative
of the total energy Etot with respect to rj is needed. This results in the atomic level stiffness kij, whereby we

obtain the particular result
kij ¼ �Eint;rirj
¼

U0
ij

rij
I þ

U00
ij

r2ij

"
�

U0
ij

r3ij

#
rij � rij; i 6¼ j ð8Þ
It is remarkable that for the special case of pair-wise interactions the diagonal elements kii of the total
atomic level stiffness tensor can be represented as a sum over corresponding off-diagonal elements kij
kii ¼ �Eint;riri
¼ �

X
j 6¼i

kij ð9Þ
3. Continuum-atomistic constitutive modelling

Next we pursue a description of the above mentioned mixed continuum-atomistic approach which is e.g.

employed among other, more sophisticated concepts by Tadmor (1996) and Ortiz and Phillips (1996) as

well as by Shenoy et al. (1999). The key idea here is to replace the phenomenological macroscopic strain

energy density W0 per unit volume in the material configuration by appropriate atomistic potentials. This

step allows in a natural way to consider a real crystal structure with the appropriate anisotropic energy

density in the setting of continuum mechanics. In the sequel, we will denote this hybrid model the con-

tinuum-atomistic model. Thereby the important step is to find a correspondence between an atomistic
energy function Ei and a specific strain energy density W0. By the assumption that the individual atomic

contributions to the total energy can be defined and that the energy of each atom i is uniformly distributed
over the volume Vi of its Voronoi polyhedron in Fig 5, see Tadmor (1996), both energies can be related as
follows
W0¼:
Eiðri1; . . . ; riN Þ

Vi
¼ 1

2Vi

X
j 6¼i

Uij ¼ W0ðri1; . . . ; riN Þ ð10Þ
The remaining problem is now to establish a relation between the continuum deformation and the atomic
distance vectors. Here we shall follow two approaches in the sequel, namely the first and the newly pro-

posed second-order CBR.



Fig. 5. The first-order Cauchy–Born rule for the case of homogeneous deformation.
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3.1. Kinematics of continuum mechanics

In order to facilitate the further discussion we firstly give a short review of the kinematics in the

framework of continuum mechanics. In this approach, the non-linear deformation map uðXÞ relates the
placement X in the material configurationB0 to the placement x ¼ uðXÞ in the spatial configurationBt, see

the upper part of Fig. 5. Thereby, the first-order deformation gradient F defines a linear tangent map and is
given by the two-point tensor F¼: rXu. In the higher-order theory, the second-order deformation gradient

G¼: rXrXu, a rank-three tensor, can be introduced in addition.

3.2. First-order Cauchy–Born rule

The conceptual idea is here to consider homogeneous deformations of an infinite representative crys-

tallite, whereby the kinematic relation is given by the first-order Cauchy–Born rule, see the introduction.

Here it is assumed that the lattice vectors rij of the spatial configuration result from the corresponding Rij in

the material configuration by the application of the local deformation gradient F ¼ rXu (which in general
varies with X), see Fig. 5,
rij ¼ F � Rij ð11Þ
Then, the strain energy density W0 defined in (10) depends only on relative distances rij between the atom i
and all other atoms and can formally be represented as a function of the deformation gradient and the fixed

distance vectors Rij in the material configuration
W0 ¼ W0ðri1; . . . ; riN Þ ¼ W0ðjF � Ri1j; . . . ; jF � RiN jÞ ¼ W0ðFÞ ð12Þ
Here the constant distance vectors Rij in the material configuration are given and depend only on the

underlying geometrical crystal lattice structure. Thus, each point of the continuum is modelled by an in-

finite crystal which deforms homogeneously. In practice the cut-off radius rc of the pair potential limits the
extension of that part of the crystal that has to be considered, see again Fig. 5.

3.3. Euler–Lagrange equations for first-order hyperelastic continua

At this place we reiterate the well-known derivation of the equilibrium equations of a first-order
hyperelastic continuum as well as the corresponding boundary conditions in the usual way by minimization

of the total potential energy:



1 A
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½A�B�
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dEtot ¼ d
Z
B0

W0ðFÞdV þ dEext ¼
Z
B0

oW0

oF
: rXdudV þ dEext ¼ 0 ð13Þ
with the variation of the potential Eext of the external forces
dEext ¼ �
Z
B0

b0 � dudV �
Z
oB0

tP0 � dudA ð14Þ
whereby b0 is the body force and tP0 is the nominal surface traction in the material configuration. Here :
denotes a double contraction of rank-two tensors P and F, i.e. PiJFiJ . After application of partial integration
and making use of the Gauss theorem Eq. (13) yields the familiar local equilibrium equations with the

conventional Neumann-type boundary conditions in the well-known format
DivP þ b0 ¼ 0 in B0 ð15Þ
P �N ¼ tP0 on oB0 ð16Þ
with the Piola–Kirchhoff stress tensor defined by
P¼: oW0

oF
ð17Þ
and N the material surface normal to oB0. Here, the operator Div denotes the corresponding divergence
operation with respect to the material coordinates X.

3.4. First-order continuum-atomistic modelling

The constitutive law given by Eq. (17) results under consideration of (10) and (12) in the following
explicit format: 1
P ¼ 1

2Vi

X
j 6¼i

fji � Rij ð18Þ
with the consequent symmetry for the appropriate push-forward, i.e. the spatial Kirchhoff stress:
P : rXdu ¼ ½P � F t� : rxdu ¼ 1

2Vi

X
j 6¼i

fji

"
� rij

#
: rxdu ð19Þ
Likewise the fourth-order tangent operator L relating the material rate of P with the material rate of F takes
the explicit format
L¼: o2W0

oF � oF
¼ 1

2Vi

X
j 6¼i

kij�½Rij � Rij� ð20Þ
Here fji ¼ �fij and kij are defined as in (6) and (8), respectively.
2 It is remarkable that the quantities which

are defined for the underlying atomistic model show up in a simple format in the relations for P and L, thus

reflecting the atomistic features in the continuum setting.
more implicit format of the constitutive law without resorting explicitly to the atomistic interaction forces can be found e.g. in

D Thesis of Tadmor (1996).

e non-standard dyadic product � emerging in (20) is here introduced for second-order tensors A, B and C as

: C ¼ A � C � Bt or ½A�B�ijkl¼
: AikBjl.



Fig. 6. The second-order Cauchy–Born rule for the case of non-homogeneous deformation.
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3.5. Second-order Cauchy–Born rule

The Cauchy–Born rule in the form (11) is insufficient to describe the kinematics for the case of inhomo-

geneous deformations. Furthermore, size effects cannot be taken into account, see e.g. Geers et al. (2001)
or Fleck and Hutchinson (1996), if the problem size reaches the scale of the atomic spacing as in the case

of nano mechanics. To get over this discrepancy we take into account the second quadratic term in the

Taylor�s series expansion of the deformation field. Thereby, (11) is considered as the first term in this ex-

pansion. The extended Cauchy–Born rule of second-order can thus be expressed in the following format

(Fig. 6)
rij ¼ F � Rij þ 1
2
G : ½Rij � Rij� ð21Þ
with the previously introduced second-order deformation gradient G. The strain energy density W0 now

consequently depends on both F and G:
W0 ¼ W0ðri1; . . . ; riN Þ ¼ W0 F � Ri1

		
 þ 1
2
G : ½Ri1 � RiN �

		; . . . ; F � RiN

		 þ 1
2
G : ½RiN � RiN �

		�
¼ W0ðF;GÞ ð22Þ
The Euler–Lagrange equations corresponding to a potential depending on F and G will be presented in the
sequel.
3.6. Euler–Lagrange equations for second-order hyperelastic continua

The familiar energy minimization for the second-order hyperelastic continuum takes again a format

similar to (13):
dEtot ¼ d
Z
B0

W0ðF;GÞdV þ dEext

¼
Z
B0

oW0

oF
: rXdu

�
þ oW0

oG
..
.
rXrXdu

�
dV þ dEext ¼ 0

ð23Þ
Here ..
.
denotes a triple contraction of rank-three tensors Q and G, i.e. QiJKGiJK . In addition to the Piola–

Kirchhoff stress (17), the second-order stress Q is here introduced as the first derivative of the energy density
with respect to the second-order deformation gradient G:



3 Th
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Q¼: oW0

oG
ð24Þ
It follows from (24) that the second-order stress is represented by a rank-three tensor. The symmetry

properties of this tensor are determined by the symmetry of G ¼ rXrXdu which is symmetric in the second
and third index because of the interchangeability of second partial derivatives. The variation of the external

potential includes an additional term due to the second-order stress traction tQ0 on the surface oB0, see e.g.

Mindlin (1965) or Fleck and Hutchinson (1996), and can be represented as a sum of three terms: 3
dEext ¼ �
Z
B0

du � b0 dV �
Z
oB0

du � tP0 dA�
Z
oB0

rNdu � tQ0 dA; ð25Þ
After simple but tedious transformations of (23) outlined in details in the Appendix A whereby we es-

sentially involve partial integration, the Gauss theorem and the Stoke�s surface divergence theorem the

following higher-order equilibrium equations and Neumann-type boundary conditions are obtained:
DivðP �DivQÞ þ b0 ¼ 0 in B0 ð26Þ
½P �DivQ� �N þ LðQ �NÞ ¼ tP0 on oB0 ð27Þ
Q : ½N �N � ¼ tQ0 on oB0 ð28Þ
Thereby LðQ �NÞ denotes the following differential operator:
�LðQ �NÞ¼: KQ : ½N �N � þ rT
XðQ �NÞ : I ð29Þ
with the mean curvature K¼: �rT
XN : I of the surface oB0, see Brand (1957).
3.7. Second-order continuum-atomistic modelling

The explicit format of the constitutive law for the Piola–Kirchhoff stress retains its form previously given

by (18). The definition (24) renders for the second-order stress under consideration of (10) and (22) the

following format:
Q ¼ 1

4Vi

X
j 6¼i

fji � Rij � Rij ð30Þ
The push-forward operation in the case of the second-order theory is more complicated as in the first-order

theory. The specific virtual work transformation yields spatial stress tensors in the following explicit for-
mat: 4
e gradient operator can be decomposed into normal and tangential parts according to the following rule: rX ð
Þ ¼
�N �N þrX ð
Þ � ½I �N �N � � rN

X ð
Þ þ rT
X ð
Þ with the normal gradient operator rN

X ð
Þ¼
: ½rX ð
Þ �N �N � rN ð
ÞN and the

tial gradient operator rT
X ð
Þ¼

: rX ð
Þ � ½I �N �N �, whereby N denotes the material surface normal vector.

e opeartion :
2;3
denotes the double contraction of two rank-three tensors with respect to their second and third indices,

:
2;3
G�ab¼

: QaMNGbMN .
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P : rXdu þQ ..
.
rXrXdu

¼ ½P � F t þQ :
2;3
G � : rxdu þ ½Q : ½F t�F t�� ..

.
rxrxdu

¼ 1

2Vi

X
j 6¼i

fji

"
� rij

#
: rxdu þ 1

4Vi

X
j 6¼i

fji

"
� r1ij � r1ij

#
..
.
rxrxdu

ð31Þ
with the spatial distance vector in the first-order theory r1ij¼
:
Rij � F t. The linearization of (30) yields the

sixth-order tangent operator MGG and the fifth-order tangent operators MFG and MGF
5

MFG¼:
o2W0

oF � oG
¼ 1

4Vi

X
j 6¼i

½kij�½Rij � Rij�� � Rij ð32Þ
MGF ¼:
o2W0

oG � oF
¼ 1

4Vi

X
j 6¼i

½kij�½Rij � Rij�� � Rij ð33Þ
MGG¼:
o2W0

oG � oG
¼ 1

8Vi

X
j 6¼i

½kij�½Rij � Rij�� � ½Rij � Rij� ð34Þ
The linearization of the Piola–Kirchhoff stress takes again the known format (20).
4. Example

To investigate the influence of the higher-order deformation gradient contribution in the extended

Cauchy–Born rule on the accuracy of the kinematic description a special non-homogeneous simple-shear-

like deformation has been chosen and studied.

4.1. Geometric characterization of a prototype deformation

Firstly we give a short description of the deformation analysed in the sequel.

4.1.1. Homogeneous simple shear deformation

Before introducing the above mentioned non-homogeneous deformation we briefly recall the main

features of the familiar homogeneous simple shear deformation, see Fig. 7. The origin of the local coor-

dinate system is chosen in the middle of the undeformed volume element. All straight vertical lines in the
material configuration transform to straight but inclined lines with the same slope a in the spatial con-
figuration. In this case the deformation field u can be represented as a linear map of the material position

vectors X as
½u� ¼ u1
u2

� �
¼ X1 þ BX2

X2

� �
, u ¼ Fhom � X ð35Þ
with the constant deformation gradient in the terms of the shear number c
he non-standard dyadic product � emerging in (33) and (34) is here introduced for second-order tensors A, B and C as

� : C ¼ A � C t � Bt or ½A�B�ijkl¼
: AilBjk .



Fig. 7. The homogeneous simple shear deformation with the spatially constant shear number c.
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FiJ ¼ F homiJ ðBÞ ¼ oui

oXJ
¼ 1 c

0 1

� �
with c � B ¼ constant over B0 ð36Þ
Clearly, the second-order deformation gradient G vanishes identically in this homogeneous case:
GiJ1 �
oFiJ
oX1

¼ 0 0
0 0

� �
; GiJ2 �

oFiJ
oX2

¼ 0 0
0 0

� �
ð37Þ
4.1.2. Non-homogeneous simple-shear-like deformation

To get a slightly perturbed simple shear deformation we add a quadratic term with a small parameter

A � B to the deformation field (35):
½u� ¼ u1
u2

� �
¼ X1 þ BX2 þ AX1X2

X2

� �
, u ¼ Fhom � X þ 1

2
G : ½X � X � ð38Þ
Note that this deformation is captured by the extended Cauchy–Born rule (21) exactly. The deformation

gradient of the perturbed simple shear deformation
FiJ ¼
oui

oXJ
¼ 1þ AX2 Bþ AX1

0 1

� �
ð39Þ
consists of the deformation gradient Fhom of the homogeneous deformation and the perturbation with the
small parameter A:
FiJ ¼ F homiJ ðBÞ þ A
X2 X1
0 0

� �
ð40Þ
Here, the second-order deformation gradient is a constant for the present case of the quadratic deformation

field:
GiJ1 �
oFiJ
oX1

¼ 0 A
0 0

� �
; GiJ2 �

oFiJ
oX2

¼ A 0

0 0

� �
ð41Þ
Interesting enough the deformation (38) can be represented in a format which appears similar to the

common simple shear deformation
u ¼ F inhom � X ; F inhomiJ ¼ 1 cðXÞ
0 1

� �
6¼ FiJ ð42Þ
Note however that the non-linear map F inhom differs from the deformation gradient F. The shear number c
is no more constant over B0 and depends on the component X1 of the material position vector X:
cðXÞ ¼ Bþ AX1 ð43Þ



Fig. 8. The non-homogeneous simple-shear-like deformation with the position-depending shear number cðXÞ.
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Thus straight vertical lines in the material configuration transform to straight lines in the spatial configu-

ration with a slope depending on the material coordinate X1, see Fig. 8.

4.2. Detailed investigations

To investigate the influence of the higher-order gradient the chosen non-homogeneous deformation has

been studied for various ratios A=B. To describe the interatomic interaction the above mentioned Lennard-
Jones pair potential (2) with material parameters fitted to aluminium, i.e. r ¼ 0:2575 nm and e ¼ 0:1699
nNnm, is used as a prototype model. These parameters are obtained by a fitting procedure under the

constraint of a stress free material configuration and equality of the atomic energy in the material con-
figuration to the sublimation energy of aluminium, i.e. Esub ¼ 3:58 eV¼ 0.574 nNnm. Thereby the cut-off
radius rc is chosen to equal five atomic spacings, i.e. r0 ¼ 0:286 nm.
Fig. 9 depicts the material and spatial collection of atoms representing the crystal of interest for two

ratios A=B, whereby A=B ¼ 0 corresponds to the homogeneous deformation field (35). The circles in the

spatial configuration contain the next neighbours of the atoms in their centers where the deformation field

has its origin. The deformed ellipses correspond to these circles pulled back by the deformation to the

material configuration. 6 It is easy to recognize that the consideration of the second-order deformation

leads to a change of the spatial configuration even for the small ratio A=B ¼ 0:1. This could better be
observed in Fig. 10 where the next neighbours distributions for three different ratios A=B > 0 are compared

with such distribution for A=B ¼ 0 corresponding to the homogeneous deformation. On the right-hand

side, the regions in which the circles and triangles overlap denote regions of a homogeneous deformation

state. The homogeneous and non-homogeneous deformation fields lead roughly to the same displacement

in these regions. With increasing A=B these regions tend to become smaller. Fig. 11 represents this ob-
servation even better. Here each figure, except from the first one, is an overlay of two spatial configurations.

One of them is deformed homogeneously (A=B ¼ 0) and the other one non-homogeneously with corre-

sponding ratio A=B varying from 0.01 to 0.25. It is plausible that the decision whether the deformation is
homogeneous enough such that the standard Cauchy–Born rule applies or if it should be treated as a non-

homogeneous deformation depends on the length of the cut-off radius rc. For instance, the deformation in
the case A=B ¼ 0:02 cannot be considered as homogeneous if rcJ 2 r0, whereby r0 denotes the lattice
constant, i.e the atomic spacing.

The energy of the central atom for various ratios A=B has been chosen as further qualitative criterion of
inhomogeneity. Thereby, B increases from 0 to 3.48 continuously. Fig. 12 shows the corresponding energy

curves together with the snap-shots of the atom distribution within the cut-off circle for special values of B.
6 To obtain a deformed ellipse depicting the boundary of the next neighbours of the atom i in the material configuration the circle in
the spatial configuration must be pulled back to the material configuration. In general this is connected with the solution of the non-

linear system of algebraic equations (38) with respect to X1 and X2. In the special case chosen here X2 ¼ u2 remains constant and this
renders X1 simply by substituting X2 in the first row of (38).



Fig. 9. The material (on the left-hand side) and spatial configuration according to (38). Prototype model configuration for A=B ¼ 0

(homogeneous deformation) and A=B ¼ 0:1 (inhomogeneous deformation). The right-hand side corresponds to B ¼ 1:16.

Fig. 10. The next neighbours of the central atom in the material and spatial configurations for different ratios A=B (solid lines on the
left-hand side) pared with the next neighbours distribution in the case of the homogeneous deformation A=B ¼ 0 (dashed line on the

left-hand side). The atoms in the case of the non-homogeneous deformation are represented as triangles on the right-hand side.

The circles correspond to a homogeneous deformation. Both cases coincide in the material configuration. The right-hand side cor-

responds to B ¼ 1:16.
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The first curve is strongly periodic since the reference crystal structure repeats itself periodically during the
homogeneous simple shear deformation. Particularly, for the chosen structure the energy becomes minimal

for the shear numbers B ¼ 1:16, 2.32 and so on. All the snap-shots correspond to the repeating reference
crystal structure and the three first minima of the energy curve for homogeneous deformation. The energy

curves differ more and more from this curve with increasing ratio A=B. Nevertheless it can be observed that
the energy change for the given parameter set is non-essential within the first period. This can be attributed



Fig. 11. The overlay of two spatial configurations of a homogeneously and a non-homogeneously deformed material area with various

ratios A=B. The deformed state corresponds to B ¼ 1:16.
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especially to the short range interaction of the pair potential we used. In conclusion a simple quantitative

inhomogeneity criterion should be elaborated.

4.3. Simple deformation inhomogeneity measure

The essential information about the deformation field inhomogeneity is contained in the second-order
deformation gradient G which is anyway needed within the gradient extended framework. For the planar

case G consists of the four vectors:
½G �¼: oF

oX

� �
¼

oF11
oX

oF12
oX

oF21
oX

oF22
oX

2
64

3
75 ð44Þ
Next, we compose the matrix DðXÞ from components which are the norms of the corresponding compo-

nents of G:
½DðXÞ�¼:
oF11
oX

����
���� oF12

oX

����
����

oF21
oX

����
���� oF22

oX

����
����

2
664

3
775 � D11ðXÞ D12ðXÞ

D21ðXÞ D22ðXÞ

� �
ð45Þ
Each component must be evaluated at the site of each atom from the next neighbours list in the cut-off

circle and the maximum value must be found:
Dmax¼: max
i;J

max
X

fDiJ ðXÞg
� �

ð46Þ
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Fig. 12. The energy of the atom in the center of the cut-off circle for various ratios A=B, whereby B increases from 0 to 3.48 con-

tinuously. The snap-shots of the atomic distribution within the cut-off circle correspond to the minima of the energy curve for the case

of homogeneous deformation ðA=B ¼ 0Þ.
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Dmax has dimension of an inverse length and we thus introduce the inhomogeneity length as the inverse

value of Dmax:
Fig. 13

values

values
L¼: 1

Dmax
ð47Þ
Now we define the deformation inhomogeneity measure as the ratio of the cut-off radius and the inhomo-

geneity length:
e¼: rc
L
¼ max

i;J
max

X
fDiJ ðXÞg

� �
rc ð48Þ
. The energy distribution within the cut-off circle for various ratios A=B and B increasing from 0 to 3.48. The corresponding

of e computed according to (50) are given additionally. The correspondence between the energy levels numbering and the energy
is given in Table 1.



Table 1

The enumeration of the energy levels as shown in Fig. 13

Number 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Value

[·10�18 J]
)4.0 )3.5 )3.0 )2.5 )2.0 )1.5 )1.0 )0.5 0.0 1 10 102 103 104 105 106
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This measure characterizes how rapidly the deformation field changes within the cut-off circle. For a

homogeneous deformation L tends to infinite and thus e tends to zero. The question which e should be
chosen as a critical value indicating that a sufficiently non-homogeneous deformation occurs depends on

the problem and needs a further study.

In the example considered in the above the first and the second deformation gradients are given by (39)

and (41). Then the matrix D is constant and can be represented as follows:
½DðXÞ� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½02 þ A2�

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½A2 þ 02�

p
0 0

� �
¼ A A

0 0

� �
ð49Þ
Consequently, we obtain for L and e under consideration of (47)–(49):
L ¼ 1

A
e ¼ A rc ð50Þ
To determine the correspondence between the introduced measure e and the inhomogeneity we compute the
energy level curves shown in Fig. 12 for each atom within the cut-off circle for various A=B and represent
this data in the form of energy isolines as shown in Fig. 13. The isolines are numbered according to Table 1.

The minimal energy level corresponds to the energy of an atom in the reference lattice. The first nine levels
are equidistant with the interval 0.5. Because of the format of the used pair potential given in the 3 the

energy under compression tends to enormous positive values due to the reduction of the distances between

the atoms in such areas. Thus the levels 10–16 correspond to such positive energy values. In Fig. 13, the

areas occupied by the next neighbours of the center atom are shown within the cut-off circle together with

the energy distribution in these areas. The corresponding e computed according to (50) are depicted ad-
ditionally. As expected, e vanishes for the homogeneously distributed energy (first column and first row).
With increasing A=B and B the energy distribution becomes more and more inhomogeneous and e increases
simultaneously. Apparently, as already mentioned above, the theory-based critical value of e corresponding
to a still sufficiently homogeneous deformation field depends on the problem and the cut-off radius. In our

particular case only the energy distribution in the second column and in the first two upper figures of the

third column can be considered as homogeneous enough in the vicinity of the center atom. In this case

emax � 0:066.
5. Conclusion

In this work, the extended continuum-atomistic framework based on the second-order Cauchy–Born

rule has been introduced for the first time and the corresponding equilibrium equations with appropriate

boundary conditions as well as the linearization needed within the iterative solution strategy have been

presented for the case of finite deformations, see (30)–(32). Furthermore, on the basis of the simple example

of a non-homogeneous deformation field we have demonstrated the influence and importance of the sec-

ond-order deformation gradient for the computation of the correct spatial configuration in terms of the
extended Cauchy–Born assumption. For the sake of the transparency all derivations and results are pre-

sented compactly in the tensor format.
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It is shown that the newly introduced deformation inhomogeneity measure e characterizes indirectly the
change of deformation field within the interaction circle. The applicability and universality as well as the

physical meaning of this measure deserve a further detailed study.

The presented work contains mainly qualitative considerations about the relevance of the higher-order
deformation gradient. As an additional motivation (besides capturing of inhomogeneous deformation at

the atomic scale) we propose the application of the higher-order gradient formulation in order to guarantee

the lower size bound for microstructures that arise due to the loss of infinitesimal rank-one convexity. The

aim of our further studies is to discretize and to implement the equilibrium conditions and to solve

boundary value problems (BVP) based on the gradient-extended theory similar to the case of small

deformations investigated by Shu et al. (1999).

Besides the BVP we furthermore intend to elaborate a failure condition based on the gradient-extended

formulation similar to our recent investigation on the basis of the first-order theory, see Sunyk and
Steinmann (2001a,b).
Appendix A. Derivation of the higher-order equilibrium and boundary conditions

Here we give the main steps of the derivation of the higher-order equilibrium and boundary conditions

(26)–(28). Firstly, Eq. (23) is partially integrated (the second term two times):
dEint ¼
Z
B0

P : dF þQ ..
.
dG dV

¼
Z
B0

Divðdu � PÞdV �
Z
B0

du �DivPdV

þ
Z
B0

DivðdF : QÞdV �
Z
B0

dF : DivQdV

¼
Z
B0

Divðdu � PÞdV �
Z
B0

du �DivPdV

þ
Z
B0

DivðdF : QÞdV �
Z
B0

Divðdu �DivQÞdV þ
Z
B0

du �DivðDivQÞdV

ðA:1Þ
After application of the Gauss theorem on the first, third and fourth terms of the last expression and
grouping of corresponding terms we obtain:
dEint ¼
Z
B0

du �Div½DivQ � P�dV þ
Z
oB0

du � ½P �DivQ� �N dAþ
Z
oB0

dF : ½Q �N �dA ðA:2Þ
The first and second terms of (A.2) contribute to (26) and (27) respectively. The variation of F ¼ rXu in

the third term is not independent of the variation of u on oB0 because if du is known on oB0, so is the

surface gradient of du, see Mindlin (1965). Therefore this term cannot directly contribute to the boundary

conditions and should be further transformed.

Here, the above mentioned material gradient decomposition into normal and tangential parts is used and

we obtain:
Z
oB0

rXdu : ½Q �N �dA ¼
Z
oB0

rNdu � ½Q : ½N �N ��dAþ
Z
oB0

rT
Xdu : ½Q �N �dA ðA:3Þ
The first term contains independent variations rN du and results in (28). The second term should be
partially integrated:
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Z
oB0

rT
Xdu : ½Q �N �dA �

Z
oB0

½rXdu � T� : ½Q �N �dA ¼
Z
oB0

rXðdu � ½Q �N �Þ : T dA

�
Z
oB0

du � rXðQ �NÞ : T dA ðA:4Þ
with T¼: ½I �N �N �. Now, the first term of the last expression of (A.4) can be transformed according to

the so-called surface divergence theorem stemming essentially from the well-known Stokes theorem for the

closed surface oB0, see Brand (1957):
Z
oB0

ðrXv : T þ Kv �NÞdA ¼ 0 ðA:5Þ
whereby K¼: �rXN : T ¼ �rT
XN : I is the mean curvature of the surface oB0 and v is a vector. Appli-

cation of this transformation leads to the final format of the second integral in (A.3):
Z
oB0

rT
Xdu : ½Q �N �dA

¼ �
Z
oB0

K½du � ½Q �N �� �N dA�
Z
@B0

du � rXðQ �NÞ : T dA

¼ �
Z
oB0

du � ½KQ : ½N �N � þ rT
XðQ �NÞ : I �dA

�
Z
oB0

du � LðQ �NÞdA

ðA:6Þ
Here, the differential operator L is defined as
Lð
Þ¼: � Kð
Þ �N �rT
Xð
Þ : I ðA:7Þ
With the Ansatz (A.6) and under consideration of (A.3) the variation of the total energy (A.2) results in
dEtot ¼
Z
B0

du �Div½DivQ � P�dV

þ
Z
oB0

du � ½½P �DivQ� �N þ LðQ �NÞ�dA

þ
Z
oB0

rNdu � ½Q : ½N �N ��dAþ dEext ¼ 0

ðA:8Þ
Each integrand in this expression contains only independent variations and therefore the equilibrium and

boundary conditions can be written in the format (26)–(28).
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